3 research outputs found

    Optimal Parameter Estimation of Solar PV Panel Based on Hybrid Particle Swarm and Grey Wolf Optimization Algorithms

    Get PDF
    The performance of a solar photovoltaic (PV) panel is examined through determining its internal parameters based on single and double diode models. The environmental conditions such as temperature and the level of radiation also influence the output characteristics of solar panel. In this research work, the parameters of solar PV panel are identified for the first time, as far as the authors know, using hybrid particle swarm optimization (PSO) and grey wolf optimizer (WGO) based on experimental datasets of I-V curves. The main advantage of hybrid PSOGWO is combining the exploitation ability of the PSO with the exploration ability of the GWO. During the optimization process, the main target is minimizing the root mean square error (RMSE) between the original experimental data and the estimated data. Three different solar PV modules are considered to prove the superiority of the proposed strategy. Three different solar PV panels are used during the evaluation of the proposed strategy. A comparison of PSOGWO with other state-of-the-art methods is made. The obtained results confirmed that the least RMSE values are achieved using PSOGWO for all case studies compared with PSO and GWO optimizers. Almost a perfect agreement between the estimated data and experimental data set is achieved by PSOGWO

    Simulation-based coyote optimization algorithm to determine gains of PI controller for enhancing the performance of solar PV water-pumping system

    Get PDF
    In this study, a simulation-based coyote optimization algorithm (COA) to identify the gains of PI to ameliorate the water-pumping system performance fed from the photovoltaic system is presented. The aim is to develop a stand-alone water-pumping system powered by solar energy, i.e., without the need of electric power from the utility grid. The voltage of the DC bus was adopted as a good candidate to guarantee the extraction of the maximum power under partial shading conditions. In such a system, two proportional-integral (PI) controllers, at least, are necessary. The adjustment of (Proportional-Integral) controllers are always carried out by classical and tiresome trials and errors techniques which becomes a hard task and time-consuming. In order to overcome this problem, an optimization problem was reformulated and modeled under functional time-domain constraints, aiming at tuning these decision variables. For achieving the desired operational characteristics of the PV water-pumping system for both rotor speed and DC-link voltage, simultaneously, the proposed COA algorithm is adopted. It is carried out through resolving a multiobjective optimization problem employing the weighted-sum technique. Inspired on theCanis latransspecies, the COA algorithm is successfully investigated to resolve such a problem by taking into account some constraints in terms of time-domain performance as well as producing the maximum power from the photovoltaic generation system. To assess the efficiency of the suggested COA method, the classical Ziegler-Nichols and trial-error tuning methods for the DC-link voltage and rotor speed dynamics, were compared. The main outcomes ensured the effectiveness and superiority of the COA algorithm. Compared to the other reported techniques, it is superior in terms of convergence rapidity and solution qualities
    corecore